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SARS-CoV-2 presence in wastewater has been reported in several studies and has received widespread
attention among the Wastewater-based epidemiology (WBE) community. Such studies can potentially be
used as a proxy for early warning of potential COVID-19 outbreak, or as a mitigation measure for po-
tential virus transmission via contaminated water. In this review, we summarized the latest under-
standing on the detection, concentration, and evaluation of SARS-CoV-2 in wastewater. Importantly, we
discuss factors affecting the quality of wastewater surveillance ranging from temperature, pH, starting
concentration, as well as the presence of chemical pollutants. These factors greatly affect the reliability
and comparability of studies reported by various communities across the world. Overall, this review
provides a broadly encompassing guidance for epidemiological study using wastewater surveillance.
© 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coronaviruses (CoVs) are a group of enveloped single-stranded
positive-sense RNA viruses, distinct for its club-like spikes pro-
teins that project from their surface [1,2]. These surface proteins are
proteins involved in the virus’ life cycle of assembly, budding, en-
velope formation, and pathogenesis [2]. CoVs can be classified into
two main groups according to their host targets e animal and
human coronaviruses. Human coronavirus (HCoV) was first iden-
tified in themid-1960s. To date, there are seven HCoV types that are
infectious to humans. Four of these types (HCoV-229E, HCoV-NL63,
HCoV-OC43, HCoV-HKU1) cause only mild diseases and the com-
mon seasonal cold [3e5]. Severe Acute Respiratory Syndrome
coronavirus (SARS-CoV) and Middle East respiratory syndrome
coronavirus (MERS-CoV) are two HCoVs that caused severe out-
breaks in 2002 and 2012, respectively.

More recently, the emergence of the Severe Acute Respiratory
Syndrome coronavirus 2 (SARS-CoV-2) in late 2019 has caused a
global health pandemic. On January 30, 2020, the ‘Coronavirus
Disease 2019’ (COVID-19) pandemic was declared as a Public Health
Emergency of International Concern by the World Health
(A. Suwardi), lohxj@imre.a-

an open access article under the C
Organization (WHO) [6]. As its name suggests, SARS-CoV-2 is
closely related to SARS-CoV in terms of its genomic and structural
composition, but it is far more highly transmissible [5]. According
to USA health protection agency, Centers for Disease Control and
Prevention (CDC), transmission routes of SARS-CoV-2 are catego-
rized as inhalation of virus, deposition of virus on exposed mucous
membranes, and touching mucous membranes with soiled hands
contaminated with virus [7]. Among these, airborne transmission is
now thought to be the primary transmission route of SARS-CoV-2
[8]. It spreads primarily through droplets generated when an
infected person coughs or sneezes, or through droplets of saliva or
discharge from the nose [9]. The rapid spread of SARS-CoV-2 is
further worsened due to globalization and increased human in-
teractions [10]. The exponential rise in coronavirus transmission
have caused massive lockdowns, from city to national levels, to
alleviate the spread of SARS-CoV-2. Donning of personal protective
equipment such as surgical masks and N95were also encouraged in
increased risks areas such as hospitals and patient care facilities to
contain the virus [11,12]. The pandemic has thrown up a lot of fresh
research in different areas from the understanding of how masks
serve to protect us and our surrounding people from viruses, to
how sanitizing agents can help in preventing transmission through
the fomite route, to the study of how aerosols facilitate the spread
of the virus, to the design of a smart mask that can observe a pa-
tient's health conditions during infection [13e22].

A COVID-19 patient may display clinical symptoms that were
similar to that of SARS-CoV infections, including fever, fatigue, dry
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cough, myalgia, and gastrointestinal infection symptoms [23,24].
Up to 33% of COVID-19 patients, with a staggering 76%e86% of
critically ill patients, has reported gastrointestinal symptoms [25].
These symptoms include diarrhea and vomiting. Due to diarrhea
and vomiting caused by gastrointestinal infections, viral RNA is
shed and disposed inwastewaters [26]. The presence of viral RNA in
wastewater highlights a potential indirect infection pathway, which
if left unexamined, can cause serious public health risks. While
wastewaters may not be a primary source of transmission of CoVs,
there is still an urgency to understand and evaluate this possible
mode of transmission and its possible benefits as a community
health surveillance tool. This research area was first highlighted in
the SARS-CoV-1 outbreak. During the SARS-CoV-1 epidemic in
2003, diarrhea was a common presenting symptom [27,28]. The
significant number of gastrointestinal infections would mean a
substantial load of viral RNA in the sewage. It was reported that
there was an outbreak within an apartment building where sewage
could possibly be the virus' transmission source [29]. It has been
suggested that toilet flushing, and faulty plumbing systems led to
the spread of the virus in the community via the building's
wastewater systems [29,30].

Given the potential severity of this infection's pathway whilst
taking lessons learnt from the SARS-CoV-1 epidemic, a systematic
quantification and detection mechanism for SARS-CoV-2 in
wastewaters would be beneficial in mitigating transmissions
through wastewaters. Several papers have discussed the occur-
rence, persistence, and removal of SARS-CoV-2 in wastewater.
Kitajima and colleagues [26] discussed the importance that
wastewater surveillance provides to understand the epidemiology
of COVID-19 and the potential role that quantitative microbial risk
assessment (QMRA) plays in reducing the impact of the current
COVID- 19 outbreak. Foladori and colleagues [31] discussed the
methods for identification and concentration of SARS-CoV-2 from
wastewater. They also highlighted the areas where further research
is needed in terms of sampling and identification of SARS-CoV-2 in
feces and wastewater and studies on the possibility of faecal-oral
transmission. Silverman and Boehm [32] provided a systematic
review on the effect of disinfectants on the decay rates of human
coronaviruses in water and wastewater.

Given the ongoing pandemic, the progress in wastewater-based
epidemiology (WBE) as a useful surveillance tool for viral patho-
gens, in particular, SARS-CoV-2, will be discussed in this review
paper. It is also apt to take stock of the different methods and
policies of how countries are using wastewater to understand the
spread and presence of COVID-19 cases will be discussed. In addi-
tion, this review seeks to provide an assessment of wastewaters as a
transmission pathway of SARS-CoV-2. The viability of wastewater
surveillance methodologies for SARS-CoV-2 detection will be dis-
cussed, along with the factors that may affect its accuracy and
effectiveness. Disinfection methods, which are of particular
importance in wastewater treatment plants, will also be discussed
for SARS-CoV-2 containment. With these, a holistic understanding
and evaluation of WBE as an approach for infectious disease sur-
veillance and the public health risks associated with SARS-CoV-2 in
wastewater can be achieved.

2. How does SARS-CoV-2 ends up in wastewater:
gastrointestinal shedding and time lag

SARS-CoV-2 positivity can be observed in feces of persons who
are symptomatic and asymptomatic [31,33]. In some cases, viral
shedding of SARS-CoV-2 in the feces was still present up to 10
weeks after respiratory clearance and throat swabs and urine
samples gave negative detection [34e38]. Human fecal matter
inevitably ends in the sewage systems which can provide an ideal
2

condition for enteric virus to replicate and spread through viral
loaded aerosols. It is also due to this unrestricted entry of waste-
water into the environment and the transportation of microbial
contaminants to humans and organisms that makes it a major
source of pathogen transmission. SARS-CoV-2, shed via human
excreta, can slowly find its way to the community wastewaters and
environment. For poor basic sanitation settings such as polluted
waters and inadequate sewage, catastrophic outcomesmay occur, if
environmental surveillance is not in place [39].

WBE is an environmental surveillance approach that was first
implemented to systematically analyze chemical residues in
wastewater influent to measure a population's consumption of or
exposure to chemicals such as legal and illegal drugs of abuse
[40e42]. Beyond the testing of drugs and chemicals, WBE has the
potential to act as a complementary approach for current infectious
disease surveillance systems and as an early warning system for
disease outbreaks [43,44]. WBE analysis of population pooled
wastewater is an attractive candidate for monitoring public health
as it provides efficient, comprehensive and real-time monitoring
data [43]. In past years, WBE is commonly used for detection of
non-enveloped viruses (which lack an outer lipid bilayer covering)
such as polioviruses, adenoviruses, and coliphage [45]. WBE is now
seen as a viablemethod for earlymonitoring and detection of SARS-
CoV-2, an enveloped virus.

Countries such as Czech Republic [46], Italy [47], Spain [48,49],
Japan [50], Qatar [51], Hungary [52], Canada [53,54] and Iran [55]
have studied the viability of WBE analysis for SARS-CoV-2. Samples
of untreated and treated wastewater were collected from the
countries’wastewater treatment plants (WWTPs). These tests have
demonstrated that SARS-CoV-2 can be detected and quantified in
wastewaters, showing the feasibility of WBE. In Spain, SARS-CoV-2
was detected in a sewage sample 41 days before their first reported
COVID-19 case [48]. Wastewater surveillance also proved to antic-
ipate the onset of the second wave in Spain, leading to the imple-
mentation of efficient lockdown measures, alleviating the
pandemic situation. Wastewater surveillance conducted in
Hungary was also effective in predicting the second wave of virus
outbreak, proving to be a useful and cost-effective tool in outbreak
detection [52]. Samples were taken from WWTPs servicing the
entire population in the capital, Budapest. Similarly, in Canada,
WBE was used to monitor the public health in the city of Halifax
and Ottawa. allowing health authorities to detect the early rise of
cases in Halifax and the resurgence of cases in Ottawa [53,54].

Apart from WWTPs, Albastaki et al. [56] and Ahmed et al. [57]
has studied the use of WBE in airline and cruise ship sanitation
systems for SARS-CoV-2 detection in the United Arab Emirates
(UAE). Both group of researchers successfully detected SARS-CoV-2
RNA in the wastewater samples. However, virus concentration
methods have to be improved as concentration were found to be
near assay limit of detection [57]. In contrast to large community
testing, WBE can also be used to test a small community for the
presence of the virus. In Singapore, WBEwas used as a form of non-
intrusive surveillancemethod tomonitor SARS-CoV-2 in residential
blocks [58]. Despite the absence of confirmed COVID-19 cases,
increased frequency and concentration of SARS-CoV-2 was detec-
ted in the wastewaters. This allowed effective measures of sub-
jecting residents to Polymerase Chain Reaction (PCR) tests, which
yielded a positive COVID-19 case, affirming the wastewater testing
results.

In the USA, wastewater surveillance was conducted in the uni-
versities as students return to campuses in the Fall Semester of
2020 [59,60]. The University of Arizona was able to use WBE to
detect, identify and isolate three infected individuals which helped
to swiftly avert potential disease transmission in the campus [59].
At the University of North Carolina at Charlotte, wastewater
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surveillance enabled the identification of asymptomatic COVID-19
cases, which could not be detected through the other campus
monitoring programs [60]. This is a successful cost-effective strat-
egy to mitigate COVID-19 outbreaks, considering the substantial
population of students living in on-campus dormitories. Through
these studies, it is well-agreed that wastewater surveillance has the
potential to act as a complementary strategy with clinical testing to
maximize the probability of detecting COVID-19 cases in the
community [48,57,58,61e63].

The wastewater samples collected from the various as-
mentioned sources has to first be concentrated for the virus
before diagnostic tests can be run. Using the samples collected from
WWTPs as an example, the recovery, detection and quantification
of SARS-CoV-2 from wastewaters is illustrated in Fig. 1. This
wastewater, containing the viral load of SARS-CoV-2, flows via a
series of sewage networks from domestic, industrial, and com-
mercial sites into WWTPs, where the untreated wastewater will be
commonly collected [64]. Meandering through a complex network
of drains and sewage increases the challenges of SARS-CoV-2
detection process and may result in a time lag in which tests can
be done to effectively trace enveloped SARS-CoV-2 from the com-
munity. As such, it has been suggested that the monitoring and
recovery of SARS-CoV-2 in sewage, before reaching aWWTP, can be
exploited [31].

For conventional recovery of untreated wastewater, there is a
challenge in the viral load due to dilution of feces upon entering
WWTPs. Despite the lower concentration of viral SARS-CoV-2,
typical WWTPs generally do not remove virions completely [29].
Coupled with high influent viral loads during pandemics, this issue
will lead to inadequate removal of viruses before water discharge
from WWTPs [29] into the community via sources of drinking
water supply and recreational venues such as swimming pools.
From wastewaters to WWTPs, SARS-CoV-2 can survive in stool
specimens for an average of 22 days [65]. When viruses have a
survivability rate (i.e. T90 - time required to reach 90% inactivation)
of hours or days, there is a high possibility of the virus reaching the
WWTP [31]. Compared to recovery of non-enveloped viruses, there
is scarce information on the recovery of enveloped viruses (in
Fig. 1. SARS-CoV-2 detection and quantification from wastewater sour
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particular, SARS-CoV-2) from wastewaters. There are many chal-
lenges on its recovery as enveloped viruses are less stable in
wastewaters compared to non-enveloped viruses [66e68] and tend
to be sensitive to some organic solvents [69]. The factors which
affect SARS-CoV-2 survival time and its recovery fromwastewaters
will be discussed in Section 4.

3. Wastewater viral detection Methods

3.1. Pre-treatment and culture

After the recovery of wastewater, it must be processed and
analyzed for the presence of SARS-CoV-2 viral RNA. Current SARS-
CoV-2 WBE studies used distinct sampling methods, viral concen-
trationmethods, real-time RT-PCR (real-time Reverse Transcriptase
Polymerase Chain Reaction) targets, and process controls and
criteria [39]. First, the collected wastewaters need to be stored at
low temperatures (usually at 4 �C) in order to preserve the viral
load and viability. As investigated separately by Medema et al. [70]
and Cutrupi et al. [71], viral RNA copies did not decrease signifi-
cantly when stored at 4 �C for 14 days.

Chemical and thermal pre-treatments are usually carried out to
inactivate the virus thus providing safer conditions during sample
handling. Much research on optimal thermal pre-treatment pro-
cedures for SARS-CoV-2 has been conducted however, a drawback
of utilizing thermal pre-treatments is that the viral RNA load will
resultantly be lower [71,72]. Discussion on thermal inactivationwill
be elaborated in Section 4. To chemically inactivate SARS-CoV-2 for
safer sample handling, Monteiro and colleagues evaluated enzy-
matic (nuclease) and viability dye (Reagent D) pretreatments to
porcine epidemic diarrhea virus (PEDV) as a CoV surrogate [73].
Molecular approaches such as quantitative Reverse Transcription-
Polymerase Chain Reaction (RT-qPCR) were utilized to detect
SARS-CoV-2 infectivity in treated wastewaters. SARS-CoV-2 infec-
tivity tests were performed on infectious and heat-inactivated
PEDV, and between infectious and heat-inactivated PEDV
following the two pre-treatments. No differences between
nuclease-treated infectious and heat-inactivated PEDV were found
ces as an infectious disease surveillance system for communities.
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while Reagent D was able to significantly decrease the RT-qPCR
signal of heat-inactivated PEDV. Auerswald and colleagues per-
formed chemical inactivation of SARS-CoV-2 by using AVL buffer
including carrier RNA; AVL buffer, GeneReach sample (contains
guanidinium thiocyanate (GITC) and t-Octylphenoxypolyethox-
yethanol (Triton X-100)) and Formaldehyde in PBS [74]. It was
found that all inactivation methods can successfully reduce viable
SARS-CoV-2 to undetected levels.

After the pre-treatments, cell culture studies can be conducted
in order to determine how long the virus can survive in different
storage environments. Mammalian cell line such as Vero E6 cell
culture are commonly used to determine the viability of SARS-CoV-
2 in the wastewater samples has been investigated by a few groups
of researchers [73,75e77]. However, as there are challenges to virus
isolation from cell cultured systems of SARS-CoV-2 from waste-
water [73,78], the need to examine the stability of SARS-CoV-2
wastewater samples in different environmental conditions needs
to be discussed.

3.2. Current methods of detection

Diagnostic tests have been developed for SARS-CoV-2 and they
are based on three broad techniques - serological, molecular, and
point-of-care detection techniques [79]. First, SARS-CoV-2 serology
(also known as antibody) testing look for antibodies in a sample to
determine if an individual has had a past infection with the virus
that causes COVID-19 [80]. A serological test identifies an in-
dividual's antibody immune response against a specific past or
current infection. The test detects the immune response through
antibodies (such as Immunoglobulins IgG, IgM and IgA) in a COVID-
19 patient's serum and plasma [81]. As such, the test is also unable
to detect the early stage of infection. CDC advised that serologic
tests are designed for surveillance and research purposes, and de-
tects previous infections in people who had few or no symptoms
[82]. A retrospective clinical evaluation on the performance of 10
commercially available rapid diagnostic tests was carried out by
Dortet and co-workers. This evaluation was designed using the
2015 Standards for Reporting of Diagnostic Accuracy Studies [83].
Their findings highlight the need for carefully verified assays and
appropriately designed serological studies to characterize trans-
mission dynamics, refine disease burden estimates, diagnose sus-
pected cases, and confirm clinically diagnosed patients without
access to RT-PCR [84].

Second, molecular approaches of COVID-19 detection refer to
diagnostic tools that can detect the single stranded, positive-sense
RNAvirus. An important step in nucleic acid detection tools is in the
amplification of the target sequence, especially when there is often
a limited amount of DNA available [85]. RT-PCR and isothermal
nucleic acid amplification are two well-developed amplification
methods diagnostic tools. RT-PCR tests, as one of the most used
SARS-CoV-2 detection methods [86,87], will be further described in
Section 2.3. Despite the wide adaptation of PCR, PCR machines are
costly, and its thermal cycling process is time consuming. The
drawbacks of PCR led to the development of alternative amplifi-
cation methods such as isothermal amplification as promising
candidates for SARS-CoV-2 detection. Isothermal techniques such
as Loop-mediated Isothermal Amplification (LAMP), Nucleic Acid
Sequence Based Amplification (NASBA), Sequence Mediated
Amplification of RNA Technology (SMART), Strand Displacement
Amplification (SDA), and more recently Multiple Cross Displace-
ment Amplification (MCDA) have been developed [79]. Compared
to PCR, these isothermal nucleic acid amplification detection
methods take place over a constant temperature. The absence of
temperature cycling or rapid heating and cooling mechanisms
makes it an efficient, simpler, and rapid detection tool which can be
4

used in resource-constrained areas [85,88].
In addition, amplicon-based metagenomic sequencing is an

effective way to target and identify the organisms of interest. For
instance, “Clustered Regularly Interspaced Short Palindromic Re-
peats (CRISPR) -associated protein” systems or CRISPR-Cas systems
can be used to detect amplicons are generated from the viral RNA of
SARS-CoV-2. The advantage of CRISPR-based nucleic acid detection
tools is that they can be programmed for repurposed applications
and function in just minutes under mild conditions. With this
pathogen detection method, researchers can sample the genes in
SARS-CoV-2 present in each complex sample. However, there are
still challenges such as the need for improved specificity due to
inherent off-target effect [89e92]. Recent work studied the
coupling of CRISPR/Cas system with nanotechnology-based
approach for colorimetric detection of SARS-CoV-2. Combining
the advantages of exponential amplification or loop-mediated
isothermal amplification (LAMP) from colorimetric detection
method and the target-specific trans-cleavage from CRISPR-based
nucleic acid detection method, Cao and colleagues have devel-
oped an assay that provides sensitive and specific detection of
SARS-CoV-2 RNA within 1 min [93].

Third, point-of-care testing refers to diagnostic of patients with
the lack of access to centralized lab facilities. Chip-based biosensors
of lateral flow assays are one example of point-of-care test devel-
oped for SARS-CoV-2 detection. Using a patient's urine or blood
sample, lateral flow assays comprising of gold nanoparticles con-
jugates and capture antibodies on two constituent lines. Red lines
represent the presence of only gold nanoparticles, and blue lines
represent a clustered gold solution on account of plasmon band
coupling [79]. Gold nanoparticles aggregate rapidly and irreversibly
change in color from red to purple due to antibody-antigen in-
teractions [94,95]. This rapid diagnostic tool is easy and convenient
to use. However, these tests are for single usage and have poorer
analytical sensitivity compared to RT-PCR [79]. Apart from lateral
flow assays, there are recent developments of material-based bio-
sensors such as Field-Effect Transistor-Based biosensors [96,97] and
electrochemical-based biosensors [98e100] as potential detection
tools for SARS-CoV-2.

Despite the many advantages, the aforementioned diagnostic
tools are not commonly found in local clinics. As such, clinics would
need to send samples to clinics with such diagnostic capabilities,
resulting in delayed test results. To this end, several rapid antigen
tests (RATs) have been developed and commercialized for quick
screenings of individuals to detect possible infection. RATs detect
SARS-CoV-2 viral proteins (antigens) in respiratory tract specimens.
These self-tests kits are easy to be administered and results could
be obtained in a mere 15e30 min [101]. These tests are especially
beneficial to screen asymptomatic individuals and should be
encouraged to as a requirement before mass gatherings in offices,
dining and concerts. Stohr and colleagues evaluated the perfor-
mance of two RATs - BD Veritor System and Roche SARS-CoV-2
[102]. The sensitivity and specificity of these self-testing kits were
compared to qRT-PCR. Through their study, it was found that
specificity was extremely high (>99%) whereas sensitivities were
76.1% (BD Veritor System) and 80.1%. (Roche SARS-CoV-2). It was
also found that the sensitivity varies across the age groups, with the
sensitivity higher in younger individuals. Sakai-Tagawa and col-
leagues evaluated 27 RATs commercially sold in Japan and found
that only 9 RATs (ESPLINE SARS-CoV-2, ALSONIC COVID-19 Ag,
COVID-19 and Influenza A þ B Antigen Combo Rapid Test, Immu-
noArrow SARS-CoV-2, Fuji Dri-chem immune AG cartridge COVID-
19 Ag, 2019-nCoV Ag rapid detection kit, Saliva SARS-CoV-2 (2019-
nCoV) Antigen Test Kit, and Rabliss SARS-CoV-2 antigen detection
kit COVID19 AG) showed high sensitivity to the B.1.617.2 (Delta)
variant [101]. However, it was noted that RATs may potentially give
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negative results for test samples when the concentration of virus in
the sample is low. This could result in untimely treatment to pa-
tients and ineffective mitigation on the spread of the virus.
Therefore, it is much needed that the ideal detection method
should be sensitive, specific, rapid, portable, repeatable, cost-
effective, and easy to use. With the recent emergence of B.1.1.529
(Omicron) variant, there is an urgent need to conduct clinical
studies to ensure the suitability and sensitivity of the various RATs
in the market.

3.3. PCR test for RNA correlation

After the collection and concentration of SARS-CoV-2 from
wastewater, quantification measurements are the final stages for
the detection of viral RNA. As the most adapted diagnostic test for
pathogens, PCR tests are used to detect COVID-19 virus as well. The
concentrated virus samples contain a human's genetic material and
viral RNA, if present. For a PCR technique, RNA is reverse tran-
scribed to DNA using a specific enzyme. RT-PCR allows the use of
RNA as a template. Hospitals have adapted the RT-PCR tests for
SARS-CoV-2 diagnosis [103,104]. The RNA template is amplified
though multiple thermocycling processes. Each thermocycling
process consists of three main steps of denaturation, annealing and
elongation. The RT-PCR process creates billions of copies of the viral
RNA from each viral RNA strand, to accurately detect the presence
of COVID-19 in a person.

4. Concentration, viability, and time decay of viruses in
wastewater

4.1. Quantitative methods for studying and correlating wastewater
quality analysis to outbreak

One of the challenges of utilizingWBE for SARS-CoV-2 detection
fromwastewaters is in its relatively low viral particle concentration
in wastewaters [105]. Detection of SARS-CoV-2 RNA in wastewater
Fig. 2. Typical virus concentration processes to concentrate Murine Hepatitis Virus (MHV), a
Ref. [110]. Copyright Elsevier 2020.
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and wastewater aerosols does not necessarily indicate viability and
infectivity of the viral particles [31]. The viral load in wastewater is
significantly lower as compared to viral load in feces. This is due to
the high turbidity of raw wastewater which may interfere with
molecular methods of assaying for viruses [106e109]. Also, viruses
tend to be adsorbed on the surface of flocs in sludge. These char-
acteristics affect the accuracy of the detection of virus in these
samples. Therefore, viral concentration methods are necessary for
viable quantification, as illustrated in Fig. 2. However, the results
only determine the cytopathogenic effect of the infected sample
and does not provide complete information on the infectivity of
viruses present in water media. Hence, the challenge remains to
preserve the viability of the virus during the sampling, the handling
and the treatment of the wastewater sample.

Concentration methods fall under four main categories: two-
phase separation/partition precipitation (such as PEG-based sepa-
ration), particle exclusion, VIRuses ADsorptioneELution (VIRADEL),
and ultrafiltration [105]. However, these concentration methods
were developed and optimized for non-enveloped enteric viruses.
The utilization of these methods for enveloped viruses (including
CoVs) results in lower recovered concentrations [69,105,111]. As
such, there is a research gap on the recovery efficiencies for
enveloped viruses, which has differing structural and physical
characteristics of the viruses compared to non-enveloped viruses
[26,112]. Several research groups have proposed concentration of
SARS-CoV-2 from wastewater samples from methods such as PEG-
based separation methods, ultracentrifugation methods and elec-
tronegative filtration methods. The various concentration methods
and process steps employed to concentrate SARS-CoV-2 from
wastewaters is tabulated as Table 1.

Ultrafiltration, polyethylene glycol (PEG) precipitation, ultra-
centrifugation, and filtration with an electronegative membrane
have been used for concentrating viruses in wastewater to enhance
the usefulness of detection assays. Although reports suggest that
absorption-extraction methods are more efficient, the efficacy in
virus concentration can be hindered due to turbidity of the
surrogate for SARS-CoV-2, from wastewater. Figure reproduced with permission from



Table 1
SARS-CoV-2 concentration methods from untreated wastewater samples.

Concentration method Process steps Ref.

Two-phase separation method - Flocculation using beef extract solution in glycine buffer
- Acidified and beef extract flocculated by addition of HCl
- Suspension stirred for 10 h
- Centrifugation at 1000g for 30 min at 4 �C
- Pellet dissolved in phosphate-buffered saline

[46]

Two-phase separation method (PEG-based separation) - Centrifugation at 4500g for 30 min
- Filtration for supernatant using 0.22 mm filters
- Addition of PEG and NaCl
- Incubated overnight at 17 �C and 100 rpm
- Centrifugation at 1300g for 90 min
- Pellet resuspended in RNase-free water

[113]

Two-phase separation method (PEG-based separation) - Filtration via 0.20 mm membrane
- Addition of PEG-8000 and NaCl Centrifugation at 12000g for 2 h or until pellet is visible

[114]

Two-phase separation method (PEG-based separation) - Centrifugation to remove large particles
- Addition of PEG or alum and centrifuged
- Incubated at 4 �C at 100 rpm for 12 h
- Centrifugation at 14000g for 45 min at 4 �C
- Virus suspended in phosphate-buffered saline
- Filtered through 0.22 mm filter
- Centrifuged using 30 kDa ultrafiltration membrane

[115]

Ultrafiltration - Centrifugation at 4654g for 30 min to remove large particles
- Supernatant filtered through 100 kDa Centricon® Plus-70 by centrifugation at 1500g for 15 min

[70]

Ultrafiltration - Centrifugation at 3000g for 30 min to remove large particles
- Supernatant filtered through 100 kDa Centricon® Plus-70 by centrifugation at 1500g for 15 min
- Filter unit inverted and centrifuged at 1000g for 2 min

[116]

Ultrafiltration - Filtered through 20 mm, 5 mm and 0.45 mm membrane filters
- Concentrated using 100 kDa Corning Spin-X concentrators
- Extracted with RNeasy Mini Kit and RNase free buffer

[117]

Ultrafiltration - Centrifugation at 200000g for 1 h at 4 �C
- Viral pellets resuspended in phosphate-buffered saline
- Viral concentrate was lysed and extracted
- Extracted nucleic acids filtered through PCR inhibitor removal kit

[118]

VIRADEL - Addition of MgCl2
- Sample passed through 0.45 mm pore size electronegative filter
- Removal of Mg ions through H2SO4

- Sample eluted with NaOH and recovered with tube containing H2SO4 and Tris-EDTA
- Centrifuged using 30 kDa ultrafiltration membrane

[116]

VIRADEL - pH adjusted to 6.0 and Al(OH)3 precipitate formed by adding AlCl3 solution
- pH readjusted to 6.0 and mixed
- Centrifugation at 1700g for 20 min
- Resuspension of pellet in beef extract at pH 7.4
- Centrifugation at 1900g for 30 min

[119]
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wastewater. An effective method to solve the turbidity of waste-
water would be centrifugation to remove larger particles and debris
coupled with Polyethylene glycol (PEG) precipitation [120e122]. It
is a simple and reliable methodology which can handle large vol-
ume of wastewater and is inexpensive for the concentration of the
SARS-COV-2 [123]. Different versions of PEG precipitation have
been used for the assessment of SARS-CoV-2 in untreated waste-
water, but the efficiencies were not reported [124]. That said, there
are reports on results from Pre-PEG and Post-PEG precipitation
which were validated using a qRT-PCR assay which showed that
PEG precipitation resulted in an increase of genome equivalent
copies from 1.4 � 108 to 4 � 109 copies/mL derived from tissue
culture cell supernatant [125]. This concentration yield is viable for
virological assays involving high Multiplicity of Infection (MOI) in
several human cell lines.
4.2. First order decay rate constants

Stability of the genome in wastewater is reported by Aaron
Bivins and co-workers. They applied the PEG precipitation meth-
odology to investigate the first order decay of infectious Covid-19
strain with initial titer of 105 and 103 median tissue culture infec-
tious dose per milliliter (TCID50mL�1) and assess its fate and sta-
bility under room temperature and alleviated temperature
6

conditions with wastewater as the medium. The infectious SARS-
CoV-2 is observed to persist in wastewater for maximum of up to
7 days in room temperature and less than 10 min in temperatures
above 50 �C. The RNA component of the virus strain persists much
longer periods under ambient and elevated temperature conditions
[78]. Despite these observations, it still does not address the
effective relationship between viral titers and COVID-19 incidence
due to the loss of real-time data and viability of virus infection from
concentration and processing methods that are necessary for tests
and analysis. La Rosa et al. summarized that the virus has low scale
water borne infectivity and at present there is no current evidence
of the virus transmitting through contaminated water [126].
However, it is good to note that aerosols from wastewater treat-
ment processes could carry infectious agents, including respiratory
viruses, which may risk viral infections to the wastewater workers
[127]. A recent study reported that SARS-CoV-2 aerosols could
maintain their infectivity for up to 16 h [128]. Another study to
mitigate aerosol transmission of Covid-19 was carried out by
Suwardi et al. As it is less likely to detect the presence of airborne
virus in air, they proposed a two-throng method that utilizes
negative air ions (NAIs) that are generated by Plant-Based Ionizers
tomitigate Covid-19 transmission by aerosol. The aerosols attached
with NAIs becomes heavier and tend to be attracted to positive
charged surfaces to form fomites [129].
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Quality data is limited by the wastewater journey and accuracy
can be fine-tuned by identifying potential sites based on blueprint
of pipelines and sewage to determine and quantify the source of
infectious SARS-CoV-2. Additionally, wastewater sample storage
and handling conditions prior to analysis could also create bias in
viral quantification. Early detection of variants within a localized
vicinity through wastewater surveillance can serve as an indicator
to the increasing or decreasing trends in infection cases, providing
guidance for policymakers as they trace infection clusters and
consider public health measures. Therefore, quantifying the decay
rate of SARS-CoV-2 RNA is important for WBE because decay in the
RNA signal between the time of excretion in feces and the time of
sampling from the wastewater collection system may lead to sys-
tematic bias in subsequent estimates relevant to public health. The
source of wastewater is also a crucial factor for the fate of the virus.
It has been postulated that SARS-CoV-2 may be sensitive to low pH,
with more research needing to be carried out to determine the
effect of acidification on SARS-CoV-2 recovery from wastewater. In
addition, chemical oxygen demand, flow rate, ammonia, pH, per-
manganate value, and total solids are wastewater characteristics to
be considered. Among the parameters assessed using the Adaptive
Neuro-Fuzzy Interference System (ANFIS) model, ammonia and pH
showed significant association with the concentration of SARS-
CoV-2 RNA measured. Increasing ammonia concentration was
associated with increasing viral RNA concentration and pH be-
tween 7.1 and 7.4 were associated with the highest SARS-CoV-2
concentration.

5. Factors affecting wastewater study as proxy for COVID-19
epidemiology

5.1. Starting concentration and presence of chemical pollution

To begin exploring the study of wastewater as a proxy for
COVID-19 epidemiology, a universal standard needs to be achieved
in sample collection, treatment, and testing to account for the
disparity in wastewater conditions at varying locations. Following
studies which prove that the SARS-COV-2 mRNA can be detected
via rectal swabs and sampling of feces [130,131], it may be intuitive
to take advantage of wastewater and knowledge of the sewage
network as a surveillance method of the virus in the region. An
additional advantage being that, up till date, active replication of
the virus in stool was reported to be absent or minimal [132].
Hence, by quantitatively studying the virus in wastewater, an
estimation of the number of infected individuals can be calculated
and mitigation efforts can be appropriately formulated in response.

However, the initial challenge faced is that feces will be com-
bined with other waste products and heavily diluted upon entering
the sewage system, greatly diminishing the detected viral load per
volume. The concentration of the virus inwastewater is reported to
decrease by at least 4 orders of magnitude in comparison to direct
sampling [31]. According to a study conducted by Cheung et al. the
median viral load detected in the stool samples of COVID-19 posi-
tive patients were 105.1 copies/mL for individuals with diarrhea and
103.9 copies/mL for those without the symptom [133]. Compara-
tively, a time-course study by Wurtzer et al. conducted at the time
of rapid spread reported the viral load in Paris across 3 WWTPs to
be in the range of 50e3 � 103 copies/mL (calculated in the review
by Foladori et al.) [31,134]. In the same time frame, Randazzo et al.
reported an average viral load of 2.5 � 102 copies/mL across 6
WWTPs in Spain [135]. This dilution is contributed by a few factors
including the variations in daily water discharged by the house-
hold, rainwater and parasitic inflow into the sewer network.
Furthermore, the pandemic has caused an increase in water con-
sumption due to heightened hygienic concerns which adds on to
7

the dilution of viral concentrations in wastewater [136].
It is important to note that the method of sample collection may

also present discrepancies in the viral concentrations. Grab sam-
pling of wastewater may lead to inconsistent results as temporal
variations exist in viral concentrations, depending on the duration
of infection. The highest concentration of viral mRNA was noted to
occur during the first week from the onset of symptoms at 107

copies/mL. Subsequently, a decrease by 2e3 orders of magnitude is
observed in the following weeks as reported in the study byWolfel
et al. [132]. In contrast, composite samples which are collected by
averaging the results of multiple aliquots in a given time period,
may provide a more representative data.

As mentioned, various works have developed multiple methods
of molecular detection of SARS-CoV-2 from wastewater samples
which were briefly summarized by Kitajima et al. [26]. Ultimately,
the concentration of viral mRNA detected per day is tabulated for a
period to study the spread of the virus. The daily viral load in
wastewater is calculated by measuring the concentration of SARS-
CoV-2 mRNA from the wastewater samples (in copies/m3) and
multiplying it with the daily flow rate of wastewater (in m3/d).
Taking into consideration the dilution of viral concentrations in
wastewater, this result can be compared to the viral load detected
in stool samples of clinically diagnosed COVID-19 individuals.
Subsequently, an estimate can be made on the number of infected
persons in the catchment area. For example, a study by Ahmed et al.
utilizing Monte Carlo simulation yielded reasonable estimates on
the number of infected individuals when compared against clinical
observations [137].

Owing to the limited knowledge of the novel coronavirus while
establishing the basis for wastewater studies, the behavior of SARS-
COV-2 is estimated to mirror other CoVs. There is evidence that
enveloped viruses are more susceptible to environmental factors
than their non-enveloped counterparts and their infectivity in
water is greatly diminished once the lipid envelope is damaged
[138,139]. It is generally understood that chemical pollution can
denature the virus and greatly decrease its viability [140]. The rate
of reduction may be further expedited in the presence of chemicals
typically used in disinfection such as chlorine-based chemicals,
organic solvents, highly acidic or alkaline solutions [139]. This also
translates to the virus being viable for a longer time in purer waters.
For example, a study conducted by Casanova et al. found that the
infectivity of coronaviruses is reduced twice as quickly in sewage in
comparison to reagent-grade water [141]. Quantitatively, Gundy
et al. established that a 99.9% decline in the viral load present in
wastewater is observed after 2e4 days [142].

5.2. Temperature

The environmental temperature is also an affecting parameter
in the viability of COVID-19 RNA in wastewater. In general, viruses
persist for a longer time in lower temperature while elevated
temperatures can cause increased sensitivity to other environ-
mental factors and eventually lead to inactivation. Bibby et al.
studied the persistence of SARS-CoV in wastewater using surro-
gates such as Phi6 and HCoV 229E and OC43. The study reported
that surrogate coronavirus was detected in wastewater near room
temperature (22e25 �C) for 2 days while it persists for 50 days at
4 �C [78]. Other studies similarly cited that SARS-CoV-2 is viable for
2 days at 20 �C and 14 days at 4 �C [26,136].

Following the extraction of wastewater samples, it is of best
interest to transport the RNA-containing solution to laboratories
without much deterioration in their state. The golden standard for
storage and transportation of RNA samples is flash freezing, fol-
lowed by further cryopreservation with nitrogen at �80 �C which
has shown to maintain the stability of RNA for years [143]. For
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shorter transportation durations, maintaining the solution at a low
temperature using ice is recommended to reduce freeze-thaw cy-
cles [144]. Many protocols developed in wastewater studies have
retained the wastewater samples at 4 �C, presumably to maintain
the viability of the sample [134,145]. Conversely, high temperatures
promote the deactivation of the virus. In a model study conducted
by Islam et al. the rate of inactivation of avian viruses AIBV and
H9N2 was expedited with increasing temperatures. Both viruses
were reportedly inactivated in 90 min at 55 �C or 15 min at 65 �C
[146].
5.3. pH

Generally, ingested viruses are be destroyed by the lowpH in the
stomach. Some of the virus may be cloaked by surrounding food
particles which protect them from the acidic environment and
transporting them to the intestine [31]. While variations may exist
in the pH sensitivities across the multiple types of viruses, it has
been understood that SARS-COV-2 will be inactivated in extremely
acidic or alkaline pH [146,147]. The response of COVID-19 to pH
variations is modelled using other well studied coronaviruses such
as SARS-CoV-1, MERS-CoV and IBV.

According to previous studies, the pH sensitivity of the studied
coronaviruses show some degree of temperature dependence.
Fig. 3 illustrates the findings from multiple sources as summarized
by Cimolai [148]. It can be observed that the stability and viability of
the selected model viruses vary across the pH scale with inactiva-
tion mostly noted at extremely low or high values at both 4 �C and
37 �C. In his review, aside from the surrogates mentioned in Fig. 3,
Cimolai details the pH dependent activity of other surrogate viruses
such as FCoV and CCoV at other temperatures which are observed
to follow a similar trend [148].

Considering the effect of multiple environmental conditions on
Fig. 3. pH sensitivity of viruses at 37 �C and 4
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the veracity of viral loads in wastewater, it may be more useful to
study the trend of viral decay or spread in the individual catchment
areas instead of predicting number of infected individuals accu-
rately. Fig. 4 depicts the expected data to be obtained from the
collection and study of SARS-CoV-2 in raw sewage water in the
described hypothetical example below.

Hypothetically, if there exist 2 individuals infected with COVID-
19 in the catchment area (person A and B) on Day 1, the total
concentration of viral RNA detected in raw sewage water is ex-
pected to be due to the additive contributions of both persons.
However, the amount of virus shed per person varies due to the
factors mentioned in the previous section. Sample collection, con-
centration and measurement continue multiple times a day, to
obtain a composite sample representative of the daily viral load.
Given that there are no new infections within a week, the viral load
in wastewater is expected to decrease according to the decay rate.

However, if on another day, 2 new infections occur, the total
concentration of viral RNA in wastewater will once again increase
because of the 4 total infections. By plotting the total concentration
detected daily, it is possible to study the spread of the virus in a
given area in terms of new infections. Furthermore, relevant task-
forces can adjust strategies accordingly to prevent further spread of
the virus. A threshold concentration represented by the horizontal
dashed line can be used as a reference to signal a new cluster of
infections. Safe management measures such as social distancing
and short-term quarantines can be imposed, and their effectiveness
can be monitored via changes in the total concentrations.

Alternatively, from the concentrations detected, the amount of
viral RNA shed can be obtained by extrapolation by 4 orders of
magnitude to account for the dilution in sewage water [31].
Comparing these concentrations to those measured in stool sam-
ples in clinical studies, a rough estimate of the number of infected
individuals can be demonstrated from these studies, similar to the
�C. Data obtained from Refs. [148e161].



Fig. 4. An analogy of a possible data set collected by wastewater epidemiology of SARS-CoV-2. Viral load from wastewater concentration is calculated based on information and
techniques used in Refs. [31,132,137]. The total concentration of viral RNA in wastewaters decreases with no new infections. An increase in total concentration of viral RNA in the
wastewaters signify possible viral outbreak in community.
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estimation by Ahmed et al. [137]. However, the focal point of this
approach remains in analyzing the trend of viral concentrations to
serve as a surveillance method and signal a potential outbreak in
the near future. It is imperative to understand the type and accu-
racy of the data gathered in wastewater to assess the suitability of
wastewater-based epidemiology. This is inclusive of the factors that
affect the survivability of the virus in various environmental
conditions.
6. Mitigation and disinfection Methods

6.1. Disinfection with ultraviolet

Sewage waters undergo multiple disinfection and purification
steps at WWTPs to ensure that the resultant product is safe for use
or consumption. Acknowledging the presence of SARS-CoV-2 RNA
in raw wastewater, extra precaution is taken to ensure the removal
of any virus remnants. According to the wastewater worker guid-
ance release in February 2020 by the U.S. Occupational Safety and
Health Administration (OSHA), effective disinfection methods uti-
lized in WWTPs include oxidation with free chlorine and inacti-
vation by ultraviolet irradiation (UV). These strategies are sufficient
to safeguard the public and staff directly working with wastewater
from the coronavirus [162].

The process of UV disinfection is described by Trojan Technol-
ogies [163]. Modern UV modules submerge UV lamps, encased in
protective quartz sleeves into clarified wastewater for illumination.
The dosage is monitored by UV intensity sensors and centralized
control systems are used to vary the output of the lamps based on
the volume and conditions of the wastewater for remote
monitoring.

The large single-stranded RNA (ssRNA) genome (~29.8 kb) of
SARS-CoV-2 likely renders it more susceptible to UVC compared to
other enteric viruses [164]. Enveloped viruses such as COVID-19 do
not seem to have a higher susceptibility to UVC (wavelength
200e280 nm) than non-enveloped viruses. This is because inacti-
vation primarily targets the genome, while lipid membranes, the
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characteristic distinction identified for enveloped viruses, do not
provide additional protection against such radiation.

Additionally, it is speculated that UVB (wavelength
280e315 nm) obtainable by exposure to natural sunlight, can in-
crease the rate of inactivation of coronaviruses according to pre-
vious studies conducted on nonenveloped viruses [32]. It is
generally believed that UV of wavelength 253.7 nm is optimal for
ultraviolet disinfection, although few studies up till date have been
cited to have used it specifically for treating COVID-19 infected
waters [165]. The cost of investment and operation of UV disin-
fection systems are drastically cheaper in comparison to other
methods and produces no toxic byproducts [166]. However, it has
also been reported that disinfection with UVC can be limited by its
shallow depth of penetration resulting in subpar results [167]. It
was highlighted by Wigginton et al. that the attenuation of UV
radiation through the solution should be well characterized to
deduce the appropriate dose.

Previous work conducted for SARS-CoV reported a 400-fold
decrease of infectious virus upon the exposure to 4016 mW cm�2,
254 nm UVC for 1 min and subsequently full inactivation after
15 min [153]. With the development of UV based advanced
oxidation technology, such as UVeH2O2, UVeCl2, UVeO3 and
UVeTiO2, the possibilities of using reactive photolysis radicals to
inactivate viruses is being increasingly explored [168].
6.2. Disinfection with chlorine

SARS-CoV-2 is known to be an enveloped virus, with a fragile
outer membrane and is, therefore, less persistent in water. Its
physical characteristics comprise of a lipid membrane that sur-
rounds a protein capsule that consists of protein and glycoprotein.
Chlorine can penetrate the lipid membrane and then reacts with
the internal proteins which result in the deactivation of the virus
[127,169,170].

A part of the work by García-�Avila et al. analyzed the resistance
of SARS-CoV and phage f2 sown in domestic wastewater against
different chlorine solutions [171]. Its analysis revealed that free



Fig. 5. Schematic diagram for wastewater treatment process. Figure reproduced with permission from Ref. [28]. Copyright Elsevier 2020.
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chlorine is a more effective disinfectant compared to other
chlorine-based disinfectants. By applying 10 mg/L of chlorine or
20 mg/L of chlorine dioxide, and after 30 min, the SARS-CoV was
completely inactivated. Since the start of the pandemic, the drastic
change in social behavior for personal and public hygiene has
triggered an excessive use of chlorine-based disinfectant which can
have a detrimental effect on the environment with high ecological
risks. This data provides a useful guide for initiating protocols for
prudent usage of chlorine-based disinfectants.

When it comes to wastewater treatment, the emphasis should
be on the ideal doses of residual chlorine to effectively while effi-
ciently disinfect water in the distribution system. Based on World
Health Organization (WHO), the presence of residual chlorine of 0.5
mg/L, measured at the endpoints of the water distribution system,
as shown in Fig. 5, must be guaranteed in all water systems for
human consumption. To deter COVID-19, it is essential to ensure
drinking water and wastewater services are fully operational. In
addition to this is the responsibility of individuals to exercise
proper personal hygiene and protective measures to mitigate the
transmission of COVID-19 [172].
7. Conclusion and outlook

Wastewater surveillance is a critical part for the assessment and
detection of pathogens and viruses, including the ongoing COVID-
19 pandemic. The use of WBE as a community surveillance tool
has been widely accepted and embraced by many countries. The
non-intrusive nature and cost-effective epidemiological surveil-
lance strategy allows WBE to be a convenient health monitoring
and testing system of the community and helps to identify possible
transmission channels. Wastewater surveillance is also a useful
detection mechanism for assessing infected individuals who are
asymptomatic, or throat swabs and urine samples gave negative
detection. As more research studies emerge with the viability of
wastewater surveillance for SARS-CoV-2 detection, it is of impor-
tance to consider the various factors that will affect the accuracy of
wastewater testing methods. This is especially so, given the dif-
ference for each communities’ wastewater environment and
external conditions. With wastewater surveillance as a
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complementary strategy that prioritizes clinical testing and aids
contact tracing efforts, better informed public health interventions
will be implemented to alleviate the effects of the pandemic.

Concentration methods have also been established by various
research groups showing the effectiveness of concentrating the
virus for high accuracy of PCR tests from wastewater samples.
However, concentration of SARS-CoV-2 is highly variable and de-
creases exponentially when diluted in municipal wastewaters. This
causes a potential challenge for WBE analysis during early virus
outbreaks. Apart from the initial virus concentration, SARS-CoV-2 is
significantly affected by environmental factors such as the presence
of chemical pollution, temperature and pH. Lastly, UV and chlorine
has both shown capabilities as rapid mitigation and disinfection
mechanisms for SARS-CoV-2 inactivation. However, precaution has
to be taken to avoid exposure to excessive UV radiation on skins
and eyes. Chemical disinfectants such as bleach and benzalkonium
chloride may cause skin and eyes irritation as well. Although active
chlorine is effective against coronaviruses, its effectiveness is
limited by its poor stability. In this regard, the right concentration
of the active ingredient and disinfectant contact time are essential
for the efficacy of the disinfection process.
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